시스템 설계 시 기본적인 케이블 구성

시스템 설계 시 장비구성과 패치 구성 등 다양하게 고려를 해야 하는 상황들이 많이 있습니다. 하지만 이런 매체를 이용가능 하게 해주는 것이 Cable과 Connector들입니다. 몸으로 따지면 혈관 같은 역할을 하고 있다고 보아도 될 것입니다. 현장 설계 시 쉽게 넘 길 수 있는 사안들이라 어려운 내용보다는 좀 더 쉽게 케이블을 활용하시거나 선택하실 수 있게 내용을 추려 보았습니다.

방송용 동축케이블은 크게 두 가지로 나누어 볼 수 있습니다.

1) 단심 Solid: 표현 그대로 한 가닥의 도체를 말합니다.

2) 연심 Stranded: 여러 가닥의 소선들이 모여 도체 한 가닥을 구성을 합니다.

Solid는 빠른 전송을 위해 적합한 케이블 구성이라고 볼 수 있으며 현재 방송 설비 시 가장 기본으로 사용하고 있는 도체입니다. 이것 을 기본으로 설명하고자 합니다.

내용상의 단어 약자는

AWG(American Wire Gage), RF(Radio Frequency) RG/U(Radio Guide / Universal : RG(케이블 구분법).

Color Bar(일반 CATV 모니터 신호): 컬러 영상기기(카메라, 모니터등) 화면에 밝기(휘도) 및 색(색도)이 올바른 재생되었는가 를 알아보기 위한 영상 테스트 신호

방송 신호의 흐름

방송업계에서는 고화질을 특징으로 하는 HD에서 나아가 대화면에서도 선명하고 고화질 영상에 대응한 빠른 전송이 요구되고 있습 니다. 이에 따라 2015년 미국 영화텔레비전기술자협회(SMPTE)는 4K에 대응한 12G-SDI라고 하는 전송규격을 제정하였습니다. 또한 한층 대용량 전송을 필요로 하는 초고화질인 8K 전송도 규격화가 진행 중에 있습니다.

포맷	HD-SDI SMPTE 292M	3G-SDI SMPTE SE 424 (SMPTE 424M)	12G-SDI SMPTE ST 2082-1		
전송레이트	1.485Gbps	2.97Gbps	11.88Gbps		
특성 임피던스(Zo)	75Ω	75Ω	75Ω		
전송로 감쇠량	20dB @742.5MHz	30dB @1.485GHz (20dB @1.485GHz)	40dB @5.94GHz		
전송로 리턴로스	15dB이상 @5M~1.485GHz	15dB 이상 @5M~1.485GHz 10dB이상 @1.485~2.97GHz	15dB이상 @5M~1.485GHz 10dB이상 @1.485~3GHz 7dB이상 @36GHz 4dB이상 @6~12GHz		

SMPTE 요구성능

12G-SDI라?

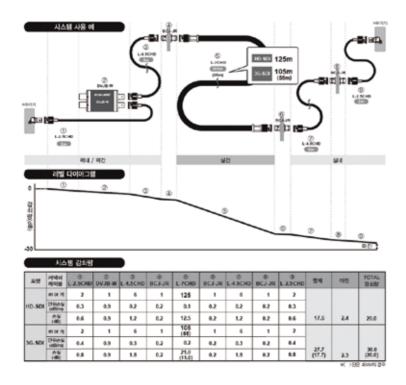
12G-SDI는, HD-SDI(2K·1080i)에 비하여 8배, 3G-SDI(2K· 1080p)에 비하여 4배의 정보량(대역)을 전송할 수 있는 새로 운 전송방식(4K·2160p)으로, SMPTE ST 2082-1(2015년)에 서 규격화하고 있습니다. 이 규격에서는 12G 전송에 사용되는 동축커넥터와 동축케이블에 대해서도 규정하고 있습니다.

3G-SDI라?

3G-SDI는, 현재 주류인 HD-SDI(1080i)에 비하여 2배의 정보량(대역)을 전송할 수 있는 전송방식(1080P)으로, SMPTE ST 424(2012년 개정)에서 규격화하고 있습니다. 이 규격에서는 3G 전송에 사용되는 동축커넥터와 동축케이블에 대해서도 규정하고 있어 카나레 75Ω 제품은 요구되는 성능을 충족하고 있습니다.

메탈케이블의 성능 향상

카나레 등 케이블 제조사들은 대용량 전송신호라고 하더라도 가능한 한 기존과 같은 동축케이블과 BNC 커넥터로 수십m에서 100m까지 전송하고자 하는 시장의 요구에 대응할 수 있도록 재료, 구조 및 제조방법을 검토 연구하고 있습니다.


기존과 달라진 케이블 랙 포설

아날로그 시절엔 낮은 주파수 대역인 270MHz에서 1GHz 대역폭까지 사용을 하였기 때문에 랙 내 배선 시 케이블을 꺾어 가며 각 을 잡아 배선을 할 수 있었습니다. 이 시절은 케이블 외피, 실드, 절연체(발포제)나 케이블 성능이 RF성을 요구하기도 하였습니다. 하지만 HD-SDI 로 넘어오면서 아날로그 시절처럼 케이블을 꺾었을 때 꺾인 대로 있는 케이블은 외피와 편조실드, 절연체(일반발포) dB가 현저히 떨어지기 때문에 고성능을 요구하는 HD-SDI에는 사용을 하지 않습니다. 이에 케이블 제조사들은 외피, 편조실드, 절 연체(발포제)를 고발포, 가스발포 등을 개발하여 유연한 케이블을 만들어 내는 기술을 개발하고 SI 업체 분들이 시설시 라운드형 배 선으로 설비를 하고 있습니다.

동축케이블 선택 방법

시스템을 설계 시 랙 트렁크 배선에 대해 고민을 많이 한 적이 있을 것으로 생각이 듭니다.

패치 단에서 VMU, 라우터 등 많은 기기들을 연결 시 5C(RG-6)로 설계를 해야만 하나, dB값들은 괜찮을 것인가? 과연 몇 미터를 기 준으로 잡아야 하나 등 수많은 경우의 수를 생각하지 않을 수 없습니다. 설계자 입장에서는 매우 중요한 부분이기 때문입니다. 하지 만 아래의 표를 잠깐 참조 하시면 랙 내의 트렁크 배선을 쉽게 할 수 있습니다. 물론 HD-SDI의 설계를 기준으로 한 도표입니다.

앞장의 도표를 참고하시면 2.5CHD와 4.5CHD, 7CHD의 거리와 점접 간의 로스율을 계산을 해 볼 수가 있습니다. 이를 활용하면 시스템 설계자의 고민을 조금이나마 해결을 할 수 있을 것이란 생각이 듭니다.

그럼 4K의 시스템을 꾸밀 때는 어떤가의 대답 또한 간단합니다. 아래의 케이블 로스율 표를 참고하시면 해답을 얻을 수 있을 것입니다.

표준 전송 거리

Video format.	Cable	HD-SD!	1090+)	0G-501	1080P.)	- 6	2G-SDI (21	60P)	
Bit rate O'D (mm)			1 485 Ghps		≥ aps	11.88Gbps			
		SMPTE 292M		SMPTE ST424		SMPTE ST2062-1			
			Na (dB/m	L (feet, m)	Na (dfi/m)	L (feetim)	HD-SDI	3G-5DI	No (dB/m
L-5.5CUHD (가 항)	7,7	495ft, 151m	0.132	515ft, 157m	0.19	335ft, 102m	300m	210m	0.391
L-3CFW	5.8	197ft, 60m	0.331	197ft, 60m	0.494	114 f 1 , 35m	120m	80m	1.142
L-3CFB	5.5	223 f t , 68m	0.291	228ft , 69m	0.43	140 f 1 , 42m	137m	93m	0.935
L-4.5CHWS	7.2	285ft, 87m	0.228	295ft, 90m	0.333	165ft , 50m	175m	120m	0.793
L-SCFW	7.7	338ft, 103m	0.194	344ft, 105m	0.284	1868 , 56m	206m	140m	0.705
L-6CFB	7.7	360 f t , 112m	0.177	377ft , 114m	0.261	223ft , 68m	225m	150m	0.586
L-2.5CHD L-2.5CHLT	4.2	217ft, 66m	0.302	226ft, 69m	0.431	143ft, 43m	130m	90m	0.917
L-4.5CHD	7	374ft, 114m	0.174	390ft, 119m	0.251	244ft, 74m	220m	150m	0.536
L-5CHD	7.7	419 f t , 128m	0.156	436 f t , 133m	0.225	269ft , 82m	256m	177m	0.487
L-6CHD	8.9	509ft, 155m	0.129	515ft, 157m	0.19	312ft , 95m	300m	210m	0.42
L-7CHD	10.2	600ft, 183m	0.109	617ft, 188m	0.156	381ft, 116m	360m	250m	0.344
L-8CHD	11.1	682ft, 208m	0.096	696ft, 212m	0.141	431ft, 131m	410m	280m	0.304

^{*12}G:L(m) = 30(dB) ÷ 표준감쇠량(dB/m@6GHz)

위의 12G에 대한 선간 거리표를 참조하여 위의 접점 간의 로스율(dB)을 계산하면 랙내 배선과 간선의 시스템 설계 시 거리가 정리될 수 있습니다.

간선용 케이블과 랙내, 실내의 케이블을 간단히 구분해 보도록 하겠습니다. HD-SDI(1080i) 기준으로 작성한 것입니다.

1) 랙 내의 배선재

L-2.5CHD

·외경 4.2mm, 도체 26AWG, 감쇠량 1m(750MHz) 0.302(dB) ·SMPTE 거리 기준 65m

·외경이 얇아 랙 내 배선에 적합하며 트렁크 배선을 피할 수 있습니다. 중계차 내부 배선에 적합합니다.

2) 실내 배선재

L-4.5CHD (RG-6A/U)

·외경 7.0mm, 도체 18AWG, 감쇠량 1m (750MHz) 0.174(dB) · SMPTE 거리 기준 114m, 칼라바 거리 180m · 모니터 라인이나 기기 연결용으로 적합합니다.

^{*1:} EQ능력을 40dB로 했을 경우.

3) 실간용 (간선용) 배선재

L-7CHD (RG-11)

·외경 10.2mm, 도체 13AWG, 감쇠량 1m (750MHz) 0.109(dB) ·SMPTE 거리 기준 183m. 칼라바 거리 270m 도체와 외경이 두꺼워 실간 연결용으로 적합합니다. 또한 장거리 송수신용으로 적합한 모델입니다.

위의 케이블들이 아날로그 시절부터 SD, HD-SDI까지 주로 사용이 되었던 케이블입니다.

4) 이동용 및 야외 촬영 시 사용 케이블

L-4.5CHWS

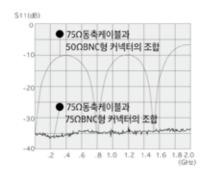
이 케이블은 도체가 연선 타입의 이중 실드 차폐의 케이블입니다. 상 당히 플렉시블 하며 야외 촬영 시 사용하거나 무빙용 카메라에 적합한 케이블입니다. 모니터 라인 거리는 약 90m로 보시면 됩니다.

5) 12G 케이블

L-5.5CUHD

이 케이블은 앞으로 4K가 기존의 베이스밴드 형태로 구축된다면 주요 배선 케이블이 될 것입니다.

※ 위의 케이블들의 SMPTE 산출 거리는 시공 시 반드시 약 20%의 로스율을 적용을 하셔야 합니다. (시공 시 거리는 줄어듭니다.)


BNC Connector 결합문제

시스템 시공 시 한 가지 더 중요하게 생각해야 할 점은 BNC Connector의 결합문제를 고려해야 한다는 점입니다. 아무리 케이블의 dB값이 좋다고 하 여도 BNC Connector의 성능이나 결합 시 문제가 발생된다면 dB값은 상당 히 떨어지며 시간이 지속되면 접속 불량의 원인이 될 수 있다는 점입니다. 아날로그 시절에는 현장에서 인두기에 전원을 연결하여 중심핀과 실드부 분을 납땜을 하여 사용하였습니다. 하지만 납땜 시 중심핀에 저항값이 올라 가 HD 시스템에는 적합하지 않고 냉납의 문제가 있으며 시간이 지속되면 납이 떨어져 나가는 문제점들이 발생이 되어 압착식의 Connector가 나오 기 시작하였습니다. 압착식 BNC Connector는 그림과 같은 구성으로 나누 어져 있습니다.

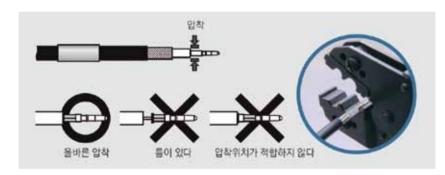
Video 용 BNC Connector는 반드시 75Ω의 Connector를 사용하셔야 합 니다. 만약 50Ω의 Connector를 사용 시 다음과 같은 문제가 있습니다.

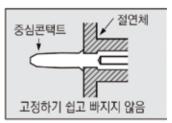
BNC Connector 부속품

임피던스 부정합의 영향

 75Ω 동축 케이블에 50Ω BNC형 커넥터를 접속했을 경우, 임피던스 부정합의 영향으로 리턴로스가 증가하여 정확한 신호를 전송할 수 없게 됩니다.

동축케이블상 의 전압분포

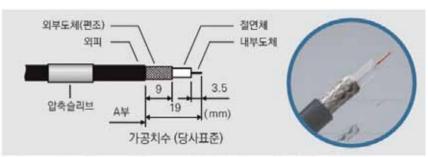

VSWR	리턴로스 (dB)
2	9.5
1.5	1.4
1.2	2.0
1.1	2.6
1.05	32
1.02	40
1.01	46.1


VSWR-리턴로 스 환산치

VSWR, 리턴로스

동축케이블의 수신단을 특성 임피던스가 다른 저항에서 종단하면, 반사파가 발생하여 진행파를 간섭하게 됩니다. 이 진행파 전력과 반사파 전력의 비율이 VSWR(전압정재파비) 로서, 이를 대수로 표시한 값이 리턴로스입니다.

Connector 결합 시 중요한 부분은 중심핀의 압착과 Connector를 결합하는 과정이 중요하다고 볼 수 있습니다. 중심핀의 압착 방법은 케이블의 내부도체에 밀어 넣고 압착 다이스의 사각에 맞추어 압착을 합니다. 이때 절연체와의 공간이 생기지 않도록 위치를 바르게 하여 압착을 해야 합니다.



절연체 Lock기구

Connector 결합 시 중요한 부분은 중심핀을 압착하여 Connector에 결속을 시킬시 락킹이 걸리는 소리나 느낌이 나야지만 중심 핀이 정확히 Connector에 결합이 되었다는 뜻이 됩니다. 사소한 문제이지만 시스템에는 치명적인 오류가 발생될 수 있습니다.

〈주의〉 알루미늄 랩 실드가 있는 케이블는 알루미늄 랩을 A부분까지 제거해 주세요.

케이블 외피 탈피 시 사진과 같은 스트립퍼를 사용하면 중심핀과 절연체, 실드, 외피 등을 깔끔히 탈피하여 작업을 하실 수 있으며 탈피로 인한 쇼트나 접속 불량을 피할 수 있습니다. 📭